If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8m^2+10m+2=0
a = 8; b = 10; c = +2;
Δ = b2-4ac
Δ = 102-4·8·2
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6}{2*8}=\frac{-16}{16} =-1 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6}{2*8}=\frac{-4}{16} =-1/4 $
| -4=16/j | | s+16/2=1 | | -17x=-21 | | n/3+14=12 | | x+159=25 | | 10x-13=437 | | 4a=3=5 | | 3z+-27=-93 | | 8.1x+44.76=-11.9+44.70 | | -11=5+2d | | 10x-13=37+20x20 | | 20+7b=34 | | 2n+3n=17 | | -18x=32 | | 7m=81 | | X^2=2x+1=3 | | x-214=-263 | | 4x-21=-10 | | x=214=-263 | | 6x+32=88-8x | | 3^3x-4=21 | | 4x+2=3x+17+2x-10 | | 9x+3=4x=5 | | 2.x-3=13 | | 26y+-114y= | | 128-18x=7x-22 | | x=0.6+12.5 | | 3x+17=4x+2+2x-10 | | 250+320=1x+1x | | n-11=-24 | | 3x^2=21x+54 | | x-14=0.6 |